The intended interpretation of intuitionistic logic

نویسنده

  • Scott Weinstein
چکیده

We present an overview of the unintended interpretations of intuitionistic logic that arose after Heyting formalized the “observed regularities” in the use of formal parts of language, in particular, first-order logic and Heyting Arithmetic. We include unintended interpretations of some mild variations on “official” intuitionism, such as intuitionistic type theories with full comprehension and higher order logic without choice principles or not satisfying the right choice sequence properties. We conclude with remarks on the quest for a correct interpretation of intuitionistic logic. §1. The Origins of Intuitionistic Logic Intuitionism was more than twenty years old before A. Heyting produced the first complete axiomatizations for intuitionistic propositional and predicate logic: according to L. E. J. Brouwer, the founder of intuitionism, logic is secondary to mathematics. Some of Brouwer’s papers even suggest that formalization cannot be useful to intuitionism. One may wonder, then, whether intuitionistic logic should itself be regarded as an unintended interpretation of intuitionistic mathematics. I will not discuss Brouwer’s ideas in detail (on this, see [Brouwer 1975], [Heyting 1934, 1956]), but some aspects of his philosophy need to be highlighted here. According to Brouwer mathematics is an activity of the human mind, a product of languageless thought. One cannot be certain that language is a perfect reflection of this mental activity. This makes language an uncertain medium (see [van Stigt 1982] for more details on Brouwer’s ideas about language). In “De onbetrouwbaarheid der logische principes” ([Brouwer 1981], pp. 253–259; for English translations of Brouwer’s work on intuitionism, see [Brouwer 1975]) Brouwer argues that logical principles should not guide but describe regularities that are observed in mathematical practice. The Principle of Excluded Third, A∨ ¬A, is an example of a logical principle that has become a guide for mathematical practice instead of simply describing it: the Principle of Excluded Third is observed in verifiable “finite” situations and generalized to a rule of mathematics. But according to Brouwer mathematics is not an experimental science, in which one only has to repeat an experiment sufficiently often to establish a law, so the Principle of Excluded Third should be discarded. All his life Brouwer avoided the use of a formal language or logic, perhaps because of its unreliability, perhaps because of his personal style (see [Brouwer 1981a], p. xi). This does not imply that he did not believe in the possibility of a useful place for logic in intuitionistic mathematics, but rather that Brouwer would not himself resort to a formal language. This attitude was detrimental to the 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC

In this paper we extend the notion of  degrees of membership and non-membership of intuitionistic fuzzy sets to lattices and  introduce a residuated lattice with appropriate operations to serve as semantics of intuitionistic fuzzy logic. It would be a step forward to find an algebraic counterpart for intuitionistic fuzzy logic. We give the main properties of the operations defined and prove som...

متن کامل

A pragmatic dialogic interpretation of bi-intuitionism

We consider a " polarized " version of bi-intuitionistic logic [9, 7, 10, 11] as a logic of assertions and hypotheses and show that it supports a " rich proof theory " and an interesting categorical interpretation, unlike the standard approach of C. Rauszer's Heyting-Brouwer logic [48, 49], whose categorical models are all partial orders by Crolard's theorem [19]. We show that P. A.Mellì es not...

متن کامل

The Intended Interpretation of the Intuitionistic First-order Logical Operators

The present thesis is an investigation on an open problem in mathematical logic: the problem of devising an explanation of the meaning of the intuitionistic first-order logical operators, which is both mathematically rigorous and faithful to the interpretation intended by the intuitionistic mathematicians who invented and have been using them. This problem has been outstanding since the early t...

متن کامل

Evaluating Construction Projects by a New Group Decision-Making Model Based on Intuitionistic Fuzzy Logic Concepts

Select an appropriate project is a main key for contractors to increase their profits. In practice, in this area the uncertainty and imprecise of the involved parameters is so high. Therefore, considering fuzzy sets theory to deal with uncertainly is more appreciate. The aim of this paper is present a multi-criteria group decision-making model under an intuitionistic fuzzy set environment. Henc...

متن کامل

Explicit provability and constructive semantics

In 1933 Gödel introduced a calculus of provability (also known as modal logic S4) and left open the question of its exact intended semantics. In this paper we give a solution to this problem. We find the logic LP of propositions and proofs and show that Gödel’s provability calculus is nothing but the forgetful projection of LP. This also achieves Gödel’s objective of defining intuitionistic pro...

متن کامل

Intuitionistic Model Constructions and Normalization Proofs

We investigate semantical normalization proofs for typed combinatory logic and weak-calculus. One builds a model and a function`quote' which inverts the interpretation function. A normalization function is then obtained by composing quote with the interpretation function. Our models are just like the intended model, except that the function space includes a syntactic component as well as a sema...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Philosophical Logic

دوره 12  شماره 

صفحات  -

تاریخ انتشار 1983